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Abstract

ŽEstimation of the elastic modulus is important in engineering design. One difference between CFCCs continuous
. Žfiber-reinforced ceramic–matrix composites , and CMCs whisker, particulate, or short fiber-reinforced ceramic–matrix

.composites , is that the anisotropic behavior of CFCCs plays an important role in affecting their mechanical behavior. This
feature may also contribute to the variation of elastic properties and strengths of CFCC. In this paper, a Fortran program is
developed to quantify the lamina stacking sequence effect on the effective elastic moduli of the laminated CFCCs. The

Ž .material for modeling is a plain-weave Nicalon fiber-reinforced silicon carbide NicalonrSiC CFCCs. Results show that
Ž w x .various stacking sequences within the CFCC a 0r30r60 lay-up will give different effective elastic moduli of the CFCCs.

This trend leads to a variation of the slope of the linear portion on the flexural stress–strain curve, i.e., changing the position
of the starting point of the non-linear portion, and the shape of the whole curve, which gives a different value of the peak
stress in the curve. q 1998 Elsevier Science B.V.

1. Introduction

Continuous fiber-reinforced ceramic–matrix compos-
Ž .ites CFCCs have shown a great potential as high-temper-

ature structural materials due to their non-catastrophic,
‘graceful’ failure behavior. Furthermore, CFCCs retain all
other excellent properties of monolithic ceramics, such as
light weight, good thermal conductivity, high specific
strength, high specific stiffness, high resistance of corro-

w xsion, wear, and oxidation, etc. 1–3 . The pertinent applica-
Žtions of CFCCs include energy production facilities e.g.,

heat exchangers, combustors, hot-gas filters, boiler compo-
.nents, first walls and high heat flux surfaces , and aerospace

Ž . w xindustry e.g., structural and machinery components 4–6 .

) Corresponding author. Fax: q1-423 974 4115; e-mail:
wzhao@nestor.engr.utk.edu.

One feature difference in microstructures between CFCCs
Žand other types whisker, particulate, short fiber-rein-

. Ž .forced of ceramic matrix composites CMCs is the strong
anisotropic behavior of CFCCs. This implies that the effect
of the in-plane fiber fabric orientation would contribute
more significantly to the mechanical behavior of the lami-
nated CFCCs than that of CMCs. It is likely that this factor
may also lead to the scatter of elastic properties and
flexural strength of CFCCs. Understanding this fabric ori-
entation effect definitely will help to minimize the influ-
ence of this effect on mechanical performance, and will
also provide a better understanding of the contributions of
other dominant parameters, such as interfacial coating
properties.

For the Nicalon fiber fabric-reinforced SiC
Ž .NicalonrSiC composite fabricated by the forced-flow

Ž .thermal gradient chemical vapor infiltration FCVI
method, some experimental work has been conducted to

0022-3115r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0022-3115 97 00320-6
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Fig. 1. Micrographs showing differences in stacking sequences of two laminates.

estimate the effective elastic moduli of the laminated
CFCC. However, little attention has been paid to the
effects of lamina lay-up, and the lamina stacking sequence
within the same lay-up, on mechanical properties of CFCCs
w x4–8 . In this paper, the influence of the lamina stacking

w xsequence within one 0r30r60 lay-up on laminate effec-
tive elastic moduli was investigated on a plain-weave,
non-symmetrical NicalonrFCVI-SiC CFCC. The computa-
tion model is established by developing a Fortran program,

w xbased on the classical laminated plate theory 9–13 . A
fiber undulation model is also employed to compute the

w xreduced stiffness matrix for the plain-weave geometry 14 .
Fig. 1 shows the fiber fabric orientation from the tensile
side of laminates and it is evident that the two laminates
have different stacking sequences.

To facilitate the computation, it is better to clarify the
terminology of lay-up, stacking series and the stacking
sequence. Lay-up is the configuration of the laminate

w x w xindicating its ply composition, such as: 0r30r60 , 0r45 ,

w x w xy60r0r60 , and 0r90 , etc. Stacking series is the con-
figuration indicating one possible combination of the ply
arrangement within a certain lay-up, which can be repeated
to form the whole sequence of the laminate. Within the
w x0r30r60 lay-up, there are six possible combinations of

w x w x w xstacking series, i.e., 0r30r60 , 30r60r0 , 60r0r30 ,
w x w x w x w x60r30r0 , 0r60r30 , and 30r0r60 . Within the 0r45
lay-up, there are two combinations of stacking series,
w x w x0r45 and 45r0 . Stacking sequence is the configuration
indicating the exact location and arranging order of the

w x w xvarious plies, such as: 0r30r60 , 0r45 ,4 6
w x Ž0r30r60r0r30r 60r0r30 , etc. note that the sub-T

.script T stands for total .

2. The material system for modeling

The material chosen for modeling is a 40 volume
percentage plain-weave Nicalon fiber fabric-reinforced



( )W. Zhao et al.rJournal of Nuclear Materials 253 1998 10–1912

FCVI-SiC composite processed at the Oak Ridge National
Ž .Laboratory ORNL . The Nicalon fiber fabrics are com-

mercial products of Nippon Carbon, which mainly contain
Si, C and O with a weight ratio of 6:3:1. The fiber preform
was cut into a disk shape with a diameter of 7.62 cm.
Then, the disk-shaped preform was stacked by the
w x0r30r60 lay-up, with about 50 plies per 1.27 cm, i.e.,
the average thickness of one plain-weave lamina is 0.0254
cm. Firstly, the fiber preform was deposited with certain
interfacial coatings, such as C andror SiC, by a conven-

Ž .tional chemical vapor deposition CVD method. The pre-
form was then put into a cylindrical FCVI chamber to be
infiltrated to obtain the SiC matrix through the decomposi-

Ž .tion of methyltrichlorosilane MTS in hydrogen at approx-
imately 10008C for about 24 h. The density of the CFCC
ranged from 2.39 to 2.63 grcm3, and the porosity volume
percentage of the composite disk was about 15%. The
flexural test bars were machined by a diamond saw with
actual final dimensions, about 0.4 cm long, 0.3 cm wide
and 0.2–0.25 cm thick. The flexural strength was obtained

w xby the four-point bending technique 1–3,6 .

3. The establishment of the computation model

[ ]3.1. The classical laminated plate theory 9–13

The classical laminated plate theory gives the most
useful guidelines for estimating the stress–strain relation-
ship for the laminated structures. According to the theory,

w xthe stresses, s , can be obtained by multiplying thex, y
w xstrains ´ with the reduced stiffness matrix after thex, y

w xtransformation to the x–y coordinate system, Q , i.e.,x, y

w x w xs s Q ´ . 1Ž .x , y x , y

w xQ can be estimated from the relation

y1 Tw x w x w xQ s T Q T , 2Ž .

w xwhere Q is the reduced stiffness matrix with fibers in the
w xy1lamina parallel to one of the x and y axes, T is the

w x w xT w xinverse matrix of T , T is the transpose matrix of T .
w xT is the force transformation matrix when the lamina is
rotated at a certain angle, u , which is expressed by

w xT

2 2cos u sin u 2 sin u cos u
2 2s .sin u cos u y2 sin u cos u

2 2ysin u cos u sin u cos u cos uysin u

3Ž .

w xWhen Q , the reduced stiffness matrix after thex, y

transformation to the x–y–z coordinate system, of a cer-
tain layer is calculated, the relations among the resultant
loading force, N, and moment, M, and reference plane

w x w xstrains, ´ , and laminate curvatures, k , can be obtained0

by the equation

0N A B ´s , 4Ž .
M B D k

where A is the extensional stiffnesses, B, the coupling
stiffnesses, and D, the flexural laminate stiffnesses, which

w xcan be related to the Q by the formulax, y

n
HL 2A , B , D s 1, z , z Q d z , 5Ž . Ž .Ž . HÝi j i j i j i j

HLy 1Ls1

Žwhere z is the coordinate variable in the z-axis the
.laminate thickness direction , H , H are the z-coordi-L Ly1

nates of the upper and lower surfaces of the Lth lamina.
Ž .If Eq. 4 is rewritten by performing matrix inversions,

it becomes

0 a b N´ s , 6Ž .
b d Mk

w x w x w xwhere matrices, a , b and d , are the laminate compli-
ance matrices which can be obtained from the stiffness
matrices as follows:

w x w ) y1 x w ) x w ) y1 x w ) xa s A y B D C ,� 4
w x w ) x w ) y1 xb s B D ,

w x w ) y1 x w ) xc sy D C ,

w x w ) y1 xd s D 7Ž .
and

w y1 x w xA s inverse of matrix A ,

w ) x w y1 x w xB sy A B ,

w ) x w x w y1 xC s B A ,

w ) x w x w x w y1 x w xD s D y B A B .� 4

3.2. The computation of the effectiÕe elastic moduli

We assume that the composite test bars, machined from
a similar location in the same disk, have similar fiber

Žstrengths with a similar Weibull distribution of strength
.and a similar extent of fiber strength degradation and

FCVI infiltration results, i.e., similar coating adhesion and
interfacial coating thickness as well as a similar porosity
distribution. In other words, except for the lamina stacking
sequence, all other factors of the lamina that form the
laminate are, statistically, the same. In this way, the CFCCs
can be treated, macroscopically, as a laminate stacked with

Ž .laminae plain-weave fibber fabrics that have, statistically,
the same properties. Thus, a relationship between the
lamina stacking sequence and laminate effective mechani-
cal properties can be obtained by the classical laminated

w xplate theory 9–13 .
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For simplicity, the derivation of the expression for the
effective elastic moduli can be started from a symmetric

Ž .case. For the symmetric laminates, Eq. 6 reduces to

0´ a a a Nx x x x y xs x
0 N´ a a as , 8Ž .yy y x y y ys

a a a0 Nsx s y ss sgs

w xwhere a is the extensional laminate compliance matrix,
w x w xy1 0 0 0which is a s A , and ´ , ´ and g are the in-planex y s

and shear strain components in the reference plane.
If we treat the symmetric laminate as a homogeneous

orthotropic material on a macroscopic scale, its elastic
behavior will be similar to that of a unidirectional lamina.
Thus, the concept of average stresses and strains and
effective laminate constants can be employed. Given the
total thickness, tt, of the laminate, then, the average

w x w xstresses, s , can be related to the loading N , i.e.,

Ns xx 1
Ns s , 9Ž .yy tt

t Ns s

where s , s and g are the average in-plane and shearx y s
w xstress components of s . The strain–force relation for the

laminate in terms of engineering constants is

0 1rE yn rE h rG´ x x y x y sx x y Nx x 1
0 N´ yn rE 1rE h rGs ,yy x y x y s y x y

tt
0 Nsg h rE h rE 1rGs xs x ys y x y

10Ž .

where E and E are the laminate effective Young’sx y

moduli in the x- and y-directions; n and n are thex y y x

laminate effective Poisson’s ratios, and h , h , h andxs ys sx

h are laminate effective shear coupling coefficients.s y

By equating the corresponding terms in the compliance
Ž . Ž .matrices of Eqs. 8 and 10 , the expressions for the

laminate effective moduli can be obtained as

1 1 1
E s , E s , G s .x y x ytt) a tt) a tt) ax x y y ss

11Ž .
Ž .Although Eq. 11 was derived from a symmetric lami-

Ž .nate, since the a , a and a in Eq. 11 were obtainedx x y y ss
Ž .from Eq. 7 , i.e., the contribution of both the resultant

loading, N, and the resultant moment, M, has already been
Ž .taken into account. As a result, Eq. 11 is also valid for a

more generalized case, such as non-symmetric laminates.

[ ]3.3. The computation of the effectiÕe stiffness matrix Q
for a lamina with plain-weaÕe reinforcements

As the CFCC under study is composed of multiple plies
Ž .of plain-weave 2D, 08r908 laminae, the calculation of

w xQ , the reduced stiffness matrix in the x–y–z coordinate
system, becomes more complex. One of the models that
can best reveal the plain-weave geometry is the fiber

w xundulation model developed by Ishikawa and Chou 14 .
The undulation model depicting the woven structure geom-
etry can be expressed by the following geometrical param-

Ž . Ž .eters, h x , h x and a , which are functions of the x1 2 u
w xcoordinate, as is shown in Fig. 2 14 :

h xŽ .1

Ž .0 0F xF a0
1w x Ž .1qsin xy a pra h r4 a F xF a� 4Ž .s u t 0 22½ 1 h a F xF n ar2Ž .t 2 g2

12Ž .
h xŽ .2

Ž .0 0F xF a° 0
1w x Ž .1ysin xy a pra h r4 a F xF ar2� 4Ž . u t 02~s w x� 4Ž . Ž .y 1qsin xy ar2 pra h r4 ar2F xF au t 2

1¢y h a F xF n ar2Ž .t 2 g2

13Ž .

where n is a basic geometrical parameter to characterize ag

fabric, which equals to 2 for a plain-weave structure, h ist

thickness of the fiber layer. The parameters

a s aya r2 14Ž . Ž .0 u

a s aqa r2 15Ž . Ž .2 u

can be determined by specifying a , which is geometri-u

cally arbitrary in the range from 0 to a.
Ž . Ž .Now, all the components in Eqs. 5 and 6 , i.e., Q, A,

B, and D matrices, become the functions of the undulation
Ž . Ž .structure-governing factor, the distance x, i.e., Q x , A x ,

Ž . Ž .B x , D x . Putting these matrix functions back into Eqs.

ŽFig. 2. Illustration for the fiber undulation model after Ishikawa
w x.and Chou 14 .
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Fig. 3. Flowchart for the computation procedures of the Fortran program.

Fig. 4. Schematic diagram for the coordinate system of flexural testing.
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Table 1
w xSix possible stacking sequences of the lay-up 0r30r60 4

w x w x w x w x w x w xPly no. 0r30r60 60r30r0 30r60r0 0r60r30 60r0r30 30r0r604 4 4 4 4 4

12th 60 0 0 30 30 60
11th 30 30 60 60 0 0
10th 0 60 30 0 60 30
9th 60 0 0 30 30 60
8th 30 30 60 60 0 0
7th 0 60 30 0 60 30
6th 60 0 0 30 30 60
5th 30 30 60 60 0 0
4th 0 60 30 0 60 30
3rd 60 0 0 30 30 60
2nd 30 30 60 60 0 0
1st 0 60 30 0 60 30

Ž . Ž .4 – 6 , we developed a Fortran program for the computa-
tion of the in-plane elastic stress distribution in the lami-
nate, Fig. 3.

3.4. Computer modeling procedures

A Fortran program was written for a SUN workstation
to quantify the stacking sequence effect on the effective
elastic moduli of the plain-weave fiber fabric-reinforced
laminated composite. As discussed before, the theoretical
model was established, principally, based on the classical

w xlaminate plate theory 9–13 . The effective reduced stiff-
ness matrix of the woven geometry was calculated using a
fiber undulation model developed by Ishikawa and Chou
w x14 . The establishment of the computation model is de-

w xscribed as follows 15,16 . Fig. 3 shows the flowchart for
computation procedures of the Fortran program we devel-
oped. In the input file, one needs to provide the elastic
moduli and Poisson’s ratios of the fiber and matrix materi-
als, the number of plies, the thickness of each lamina, the
fiber orientation in the fiber fabric plane of each lamina,

Table 2
Stacking sequences for laminates with 10 to 13 plies

Number 10-layer 11-layer 12-layer 13-layer

13th 0
12th 60 60
11th 30 30 30
10th 0 0 0 0
9th 60 60 60 60
8th 30 30 30 30
7th 0 0 0 0
6th 60 60 60 60
5th 30 30 30 30
4th 0 0 0 0
3rd 60 60 60 60
2nd 30 30 30 30
1st 0 0 0 0

and the load andror moment applied. From the output, one
can obtain the values of the laminate effective elastic
moduli. Fig. 4 is the coordinate system for the computa-
tion, the x, y and z axes are the longitudinal, the trans-
verse, and the thickness directions of the bend bar, respec-
tively, and the tensile surface is on the upper side of the
bend bar.

3.5. The input data

The thickness of the flexural test bar is usually 0.3 cm.
The average thickness of the Nicalon woven cloth is
0.0254 cm. Thus, the 0.3 cm thick test bar contains
roughly 12 layers. Because the fill and the warp threads in
the plain-weave fabric are of the same fiber materials, the
mechanical properties of the fabric are the same for or-

Ž .thotropic right angle directions, i.e., the mechanical prop-
erties of the fabric in the 08 direction is the same as that in
the directions of 908, 1808 and 2708. Therefore, it is the
same case with directions of 308, 1208, 2108 3008 and 608,

w x1508, 2408 3308, for the 0r30r60 lay-up. Since the
orientation of adjacent layers can be rotated 308 clockwise
or counterclockwise, altogether, there are only six stacking

w xsequences within the 0r30r60 lay-up family, i.e.,
w x w x w x w x0r30r60 , 60r30r0 , 30r60r0 , 0r60r30 ,4 4 4 4
w x w x60r0r30 and 30r0r60 , as shown in Table 1. Some4 4

of the specimens are ;0.25 cm thick. This indicates that
the number of laminae that form these specimens is not the
same. If the thickness of these specimens ranges from 0.25

Table 3
Elastic properties of Nicalon fiber and FCVI-SiC matrix

Items Elastic Shear Poisson’s
modulus modulus ratio
Ž . Ž .GPa GPa

Nicalon fiber 190 85 0.12
FCVI-SiC matrix 400 154 0.30



( )W. Zhao et al.rJournal of Nuclear Materials 253 1998 10–1916

cm to 0.32 cm, these laminates contain 10 to 13 plies.
Their possible stacking sequences are listed in Table 2.
Table 3 lists the material properties of the Nicalon fiber
and the FCVI-SiC matrix. A loading moment of 500 Pa m3

is assumed to be applied to the laminate for numerical
calculations.

4. Results and discussion

4.1. The effect of the lamina stacking sequence on effectiÕe
elastic moduli of the laminated composite.

Fig. 5 presents the relationship between the effective
elastic moduli of the laminated composite and the stacking

w xsequence for the 0r30r60 lay-up. As expected, a differ-
ent stacking sequence contributes to the variation of effec-
tive elastic moduli.

4.1.1. The effect of different stacking sequence with a fixed
ply number

The results show that different stacking sequences
within the same lay-up of a composite with a fixed ply
number will give various effective elastic moduli of the
laminated composites. For example, for a laminate with 11
plies, if the laminate is stacked up by the sequence of

w xrepeating the stacking series of 0r30r60 , the effective
elastic modulus in x-axis is 253.8 GPa; if the laminate is
stacked up by the sequence of repeating the stacking series

w xof 30r60r0 , the effective elastic modulus in x-axis is
233.9 GPa; if the laminate is stacked up by the sequence of

w xrepeating the stacking series of 60r0r30 , the effective
elastic modulus in x-axis is 238.5 GPa. So it is with the
effective elastic modulus in the y-axis. The same trend is
also observed for the ply number of 10 and 13. Thus, if the

laminates have different stacking sequences, the magnitude
of the effective elastic modulus will be different, even if
the laminates are of the same materials and under the same

Ž .loading condition Table 1 and Fig. 5 . However, one
important feature in Fig. 5 is that 12 is a good number of

w xplies for the 0r30r60 lay-up, since with this number of
plies, the effective elastic modulus is not sensitive to the

w xstacking sequence for the 0r30r60 lay-up. The reason is
probably that 12 is an integer multiplier of the number of

w xpossible lamina fiber orientations, i.e., 3, in the 0r30r60
lay-up. This indicates that it is possible to minimize the
stacking sequence effect on elastic moduli, if we choose
the right number of plies for a given lay-up.

4.1.2. The effect of ply number
A difference in the effective elastic modulus may also

occur for laminates containing different numbers of plies.
Although the two laminates have the same type of lay-up,
and are arranged by the same repetition of the lamina, the
difference in the number of plies gives the variation in the

Žexact stacking sequences of the two laminates Table 2 and
. w xFig. 5 . For the same stacking series, say 0r30r60 , if the

laminate has 10 plies, the effective elastic modulus in
x-axis is 262.5 GPa; if the laminate has 11 plies, the
effective elastic modulus in x-axis is 253.8 GPa; if the
laminate has 12 plies, the effective elastic modulus in
x-axis is 248.6 GPa; if the laminate has 13 plies, the
effective elastic modulus in x-axis is 258.8 GPa. It is
obviously seen that the effective elastic modulus varies

w xwith the different number of plies, and the 0r30r60
stacking series usually gives a higher magnitude, but fol-
lows no steady rules. This trend reveals that the thickness
of the specimen affects the effective elastic modulus of the
composite. This suggests that there is a difference in the
effective elastic modulus, and thus, it is difficult to com-

Ž w x.Fig. 5. Calculated stacking sequence effect on the effective elastic moduli of laminated CFCCs lay-up 0r30r60 , under an assumed
bending moment of 500 Pa m3.
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pare strength values obtained from CFCC specimens with
different thicknesses.

4.2. The effect of lamina stacking sequence on flexural
strength of the laminated composite through Õarying the
laminate effectiÕe moduli

Beside the effects on the variation of laminate effective
elastic moduli, shown in Fig. 5, our previous results
revealed that the lamina stacking sequence can also affect
the matrix-cracking stress of a laminated composite, Figs.

w x6 and 7 15,16 . The latter leads to the variation in the
internal stress distribution of the laminate, which indicates
that laminates with different stacking sequences can, prob-
ably, bear different external loads. Furthermore, because
the maximum stresses are located at different plies in two
composites with different stacking sequences, this trend
will probably lead to crack initiation at difference sites in
the laminate thickness direction. This behavior will also
contribute to difference in composite failure modes. Even-
tually, these results will cause a variation in the extent of
energy-dissipating toughening mechanisms of CFCCs, such
as fiber pullout and bridging.

The stress–strain curve of a CFCC is composed of two
portions. One is the linear elastic region, where the end
point represents the matrix-cracking stress, and the slope
of the line stands for the effective elastic moduli of the
CFCC laminate. The other is the non-linear portion of the
curve that represents the load transferring from the matrix
to fiber after the matrix crack initiation until the eventual
fiber pullout. The shape of this portion of the curve is
mainly dependent on the composite system, the percentage
of the reinforcement, the fiber strength, and the fiberrma-
trix interfacial behavior, as mentioned before. The implica-
tion is that difference in the stress–strain curves of CFCCs
may be simply caused by the variation in the end points of
the linear part, which is also the starting point of the
nonlinear part, and the difference in the shape of the
nonlinear part. For the CFCCs in the present study, we can
roughly construct the flexural stress–strain curve from two
cases; one assumes that the nonlinear portion maintains

Fig. 6. Calculated maximum tensile stresses for different stacking
w xsequences of the 0r30r60 lay-up, under an assumed bending

moment of 500 Pa m3.

Fig. 7. Calculated maximum tensile stresses for different stacking
w xsequences of the 0r30r60 stacking series, under an assumed

bending moment of 500 Pa m3.

approximately the same shape, and the other considers
variations in the shape of the nonlinear portion, as dis-
cussed below.

4.2.1. Case 1: The similarly shaped nonlinear portion
The specimens in the present study have the same

matrixrfiber system, the same fiber volume percentage,
and the same type of interfacial coatings. If they are taken
from the same depth positions in the disk, i.e., minimizing
the factor regarding the difference in the fiber strength
degradation due to the high-temperature damage during
FCVI processing, all other mechanical properties are the
same except for the difference in the stacking sequence. In
this case, just for simplicity and for the first order of
estimation, we can assume that the shape of the non-linear
portion of the CFCC stress–strain curve always remains
the same for a given interface. This means that differences
in the predicted stress–strain curves may be viewed as
variation in the end points of the linear portion, which is
also the starting point of the nonlinear portion. If the
laminates with different stacking sequences have the same
moduli, e.g., for the laminate with 12 plies, the contribu-
tion to the difference of laminate internal stress distribu-

Ž .tions can be schematically shown in Fig. 8 a . The differ-
ence in the matrix-cracking stress leads to different starting
points of the non-linear portion, which can give a different
peak stress on the curve, i.e. the different ultimate strengths
of the CFCC. In other words, the stacking sequence of
w x0r30r60 gives the highest level of the stress–strain4

w xcurve, while the 30r60r0 yields the lowest level among4
w x w xthe stacking sequences of 0r30r60 , 30r60r0 and4 4

w x Ž .60r0r30 , Fig. 8 a . This trend could result from the4
w xfact that the 0r30r60 has the lowest maximum tensile4

stress, Fig. 6, i.e., it has the highest matrix-cracking stress,
w xwhile the 30r60r0 has the highest maximum tensile4

w xstress and the lowest matrix-cracking stress 15,16 . Fig.
Ž .8 b illustrates the case when the stacking sequences lead

to variations in both the matrix-cracking stress and the
laminate effective elastic moduli. Both the end point and
the slope of the linear portion of the stress–strain curve
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Fig. 8. Illustrations of the contributions of stacking sequence effect on the flexural strength of CFCCs by varying the matrix cracking stress
Ž .and laminate effective elastic modulus: a three stacking sequences having the same effective moduli, but different matrix cracking stresses;

Ž .b two stacking sequences having different stacking series and different laminate effective elastic moduli.

can contribute to differences in the final peak stress of the
whole stress–strain curves.

4.2.2. Case 2: Differently shaped nonlinear portion
As previously mentioned, differences in the locations of

the matrix-cracking stress may lead to variations in the
laminate failure modes, which may contribute to different
extents of the energy-dissipating toughening mechanisms.
These will change the shape of the nonlinear portion of the
stress–strain curve of the CFCCs. In this case, the differ-
ence in both the starting point and the shape of the
non-linear portion will lead to a different peak stress on
the stress–strain curve, i.e., a scatter in the flexural strength
of the CFCC.

The stacking sequence effect can be a reason for the
scatter observed in the flexural strengths of CFCCs. The
effect influences the flexural strength of laminate by
changing the internal stress distribution within the lami-
nate. This trend can lead to variations in the three aspects

Ž .of the laminate: i the matrix-cracking stress, which yields
a different starting point of the nonlinear portion of the

Ž .flexural stress–strain curve; ii the effective laminate elas-
tic moduli, which give the different slopes to the linear
portion of the flexural stress–strain curve and that also
changes the position of the starting point of the non-linear

Ž .portion; iii the laminate failure modes, which may lead to
different extents of the energy-dissipating mechanisms and
that will change the shape of the non-linear portion. Differ-
ences in the starting point and the shape of the non-linear
portion will lead to different peak stresses in the stress–
strain curves, i.e., a scatter in the flexural strengths of the
CFCCs. The effect will be more evident, if the specimens
have varying thicknesses, and if the fiber, matrix, interfa-
cial coating thickness and porosity are more evenly dis-

w xtributed. Although the 0r30r60 lay-up is quasi-isotropic,
after being cut into flexural samples, the composite bend
bars become laminates with non-identical stacking se-
quences, due to the difficulty in machining. Variations in
the laminate stacking sequences can override the initial

w xdesign purpose, the quasi-isotropic nature of the 0r30r60
lay-up. The characteristics of the mechanical performance

w xof the CFCCs with the 0r30r60 lay-up can be more
accurately understood using the flexural strength, if the
stacking sequence effect of the CFCCs can be taken into
account.

5. Conclusions

The effective elastic moduli of a plain-weave Nicalon
fiber-fabric reinforced SiC-matrix ceramic composites with

w xa 0r30r60 lay-up were computed. Lamina stacking se-
quence, including variations in stacking series and ply
numbers, can lead to differences in the effective elastic
moduli of a laminated CFCC. The trend, combined with its
effects on the in-plane elastic stress distributions, may
contribute to the scattering of flexural strengths of CFCC.
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